"Approximating the #tail #risk #measure by its sample average approximation, while appealing due to its simplicity and universality in use, requires a large number of samples to be able to arrive at risk-minimizing decisions with high confidence. This is primarily due to the rarity with which the relevant tail events get observed in the samples. In simulation, Importance Sampling is among the most prominent methods for substantially reducing the sample requirement while estimating #probabilities of #rareevents."
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
10
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
40
bottom of page
Kommentare